Rig Power Supplies

- Many rigs require external source of Power
- Primary power 115VAC / 60 Hz

Rig Specs for Voltage & Current?

What to look for in a power supply?

NSARC / VA7JW

Rig Power Requirements

- Operating Voltage
 - typically 13.8VDC (derived from nominal car battery voltage)
- Allowable variation in DC voltage
 - typically +/- 1 volt (will have to be a regulated supply)
- Maximum DC Current
 - typically 25 amp for 100W on Transmit
 - transmit, key down, means continuous (use this to determine current)
 - Receive will be much less
- Connectorization
 - Need special connectors or cable from manufacturer ?

Rig Supplies - AC to DC

- Two basic types ...
- Linear Supplies
 - Least expensive / Simple circuitry
 - Big & heavy
 - Runs hot
- Switching Supplies
 - More expensive / Complex circuitry
 - Small and light
 - ♦ Runs cool
- Which is best?

Astron Linear

Alinco Switcher

Specifications

Input Voltage

- Input voltage nominally 120 VAC
- ◆ Range of input voltage typically 105 to 135 VAC
- PS may be selectable to run off 220 VAC

Output Voltage

- ◆ Fixed (13.8VDC) or if Adjustable (5 to 15 VDC), what range?
- Spec'd at nominal input voltage and rated output current?

Output Current

- Maximum continuous current rating in Amps
- Intermittent maximum current rating (SSB or CW peaks)

Regulation

- Requirement to hold output voltage to better than +/- 1% under all conditions (something like 13.8V +/- ~ 100 mV)
- Line Regulation
 - How much does the output voltage change when the AC input voltage changes?
 - ◆ Input voltage can vary from 105 to 130 VAC, or ~ +/- 10%
- Load Regulation
 - How much does the output voltage change when the load current goes from zero to maximum?
 - Output voltage will vary due to circuit resistances within the power supply

Protection

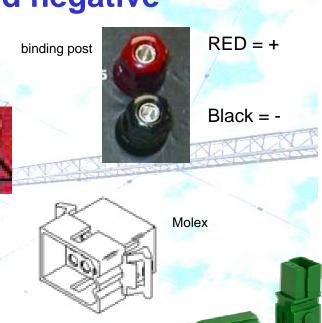
- Fuses
 - ◆ Input fuse is a safety must (generally Yes)
 - Output may be electronically "fused" (generally Yes)
- Short Circuit
 - ◆ if the output overloaded or is accidentally shorted does the power supply automatically limit the current to a safe level? (generally Yes)
- Over Voltage
 - ◆ Internal failure of PS may cause output voltage to go high, is there over-voltage protection? (generally No)
 - Rig damage

Output Ripple & Noise

Ripple

- ◆ Rectify 60 Hz line to convert AC to DC
- ◆ Ripple freq is the 120 Hz + harmonics (full wave rectification)
- DC Output filter circuits reduce ripple content
- Excessive ripple shows up as audio hum (filter caps died))

Noise


- ◆ AC voltages other than 60 Hz harmonics
- Linears are very quiet; no noise sources.
- ◆ Switchers are very "noisy" due to switching action (more later)
- Switchers can produce harmonics at RF and may be heard on receiver.

Output Connections

Polarity Markings - positive and negative

- Binding Posts
- Screw Terminals
- Molex Style
- Power Pole Style
- Manufacturer's proprietary?
- High Current 30A rated!
 - need a very positive connection (pun intended)

wire lug connection

Safety

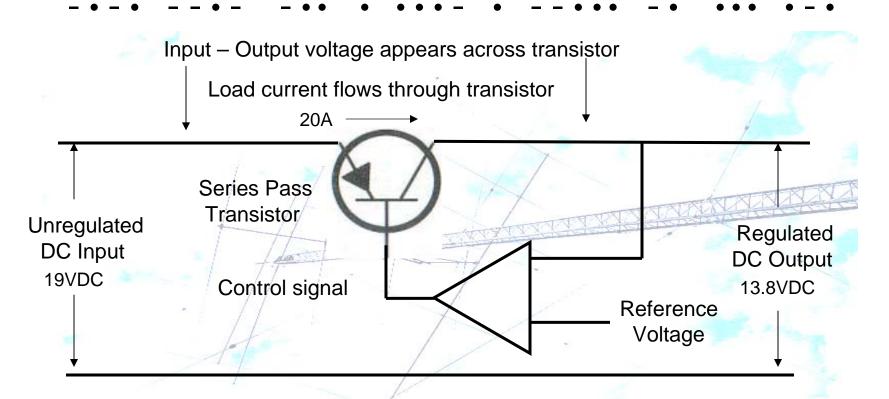
- Three Prong Plug very least requirement
 - Provides shock (electrocution) protection
- Electrical Safety
 - ◆ CSA (Canadian) & UL (American) approval sticker?
 - Agencies are harmonized tested for same parameters
 - ◆ Tested for hazards; fire, insulation, shock etc.
 - Do not determine how well PS performs.
 - Every electrical appliance sold in Canada must be CSA approved.
 - Ham power supplies often not approved.

Spec Summary

- Linear or Switcher all considerations apply
 - Input Voltage, and Range
 - Output Voltage, and Range
 - Output Current, and Range
 - Regulation of output voltage, Line and Load (a must)
 - Ripple and Noise (get lowest you can)
 - Protection against Over Current & Short Circuit.
 - Protection against Over Voltage (rarely, bonus)
 - Safety CSA / UL (you take your chances with Ham stuff)

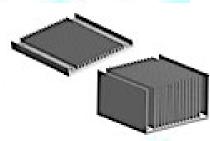
Linear Supplies

- Transform 120 VAC to ~ 12VAC
- Rectify AC to DC
- Filter the rectified DC
- Regulate the DC Output


Linear Circuit

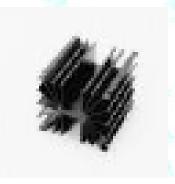
voltage o/p AC com output 0 mains time Transformer Rectifier Smoothing Regulator Output: regulated DC capacitor charging capacitor discharging Ripple current or voltage Smoothing time

Regulator


Power = (Voltage across transistor) x (current through transistor)

Heat & Heat Sinks

- Power dissipation = Heat
- 5 volts x 20 amps = 100 watts !
- Transistor will incinerate
- Need a Heat Sink
- Heat sink removes heat from the transistor and dissipates to ambient air
- Heat Sink devices have large surface area to contact air for cooling
- Ensure there room around HS to allow airflow!
- KEEP IT COOL



Large Components

- Linear supplies characterized by:
- Large transformers
 - ◆ 25 lbs or more
 - Run hot
 - Copper loss (wire resistance)
 - Core loss (magnetic losses)
- Large filter capacitors
 - ◆ Typically > 1000 uF
- Large heat sinks

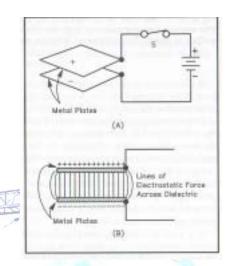
Output Ripple

 Rectification ripple can be improved by using larger or more filter caps.

... not necessary as

- Regulators act fast enough to regulate out the ripple variations
- Linear supplies are VERY "quiet" electrically

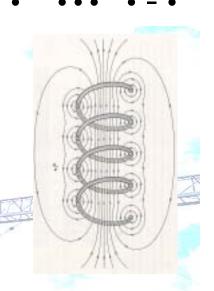
Switching Supplies



- Rectify AC to DC directly off line (~ 150 VDC)
- Filter the raw rectified DC
- Switch the DC on and off at a 60 kHz to make an AC waveform
- Apply to a high frequency, voltage step down, transformer
- Rectify the 60 kHz to DC
- Filter the DC
- Regulate the DC output
- But first, a "new" look at basic components

Capacitors

- Acting as Energy storage device
- Energy stored in Electric Field
- Voltage storage device
- Put energy in
- Take energy out
- Capacitor runs cool (non-dissipative)



Inductors

- Acting as an Energy storage device
- Energy stored in Magnetic Field
- Current storage device
- Put energy in
- Take energy out
- Inductor runs cool (non-dissipative)

Transistor as a Switch

■ Think of a light switch ...

- ◆ When closed current flows / no voltage drop across switch
- **◆** Power = Volts x Amps and V =0, therefore power = 0
- ♦ When open current = zero, voltage = 120V
- ◆ Power = Volts x Amps and I = 0, therefore power = 0

Transistor as a switch

- ◆ Drive transistor on hard, V ~ 0 as current flows. ~ no power
- ◆ Turn transistor off, I = 0 as no current flows, ~ no power
- Power dissipated in a switched transistor is small
- Transistor runs cool (unlike the series pass regulator)

Diode as a Switch

- Rectifier diode acts like a switch
- Conducts in "forward" direction, V ~ 0 (actual 0.3 to 0.6V)
- Does not conduct in "reverse" direction, I = 0
- Power dissipated in a Diode is small
- Diode runs cool

Transformer Equation

secondary

 $V_{primary} = K X f X N X A X B$

- k is a constant
- f is frequency
- **♦ N** = number of primary turns
- ◆ B = flux density (magnetic lines)
- ◆ A = area of core

primary

The higher the transformer frequency, the smaller the transformer becomes.

Transformer - Inductor

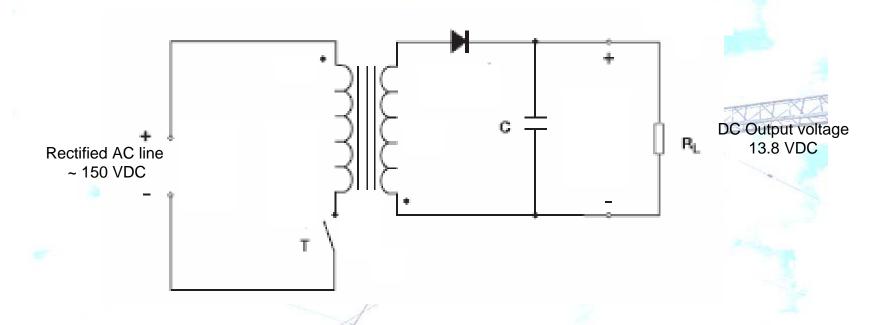
output voltage

- Transformer can act as an inductor
 - Primary winding is an inductor
 - Store energy in its magnetic field
- Put a switch in the primary,
 - turn switch on, store energy in transformer
 - turn off switch
 - stored energy flows out of secondary

60 kHz on-off drive

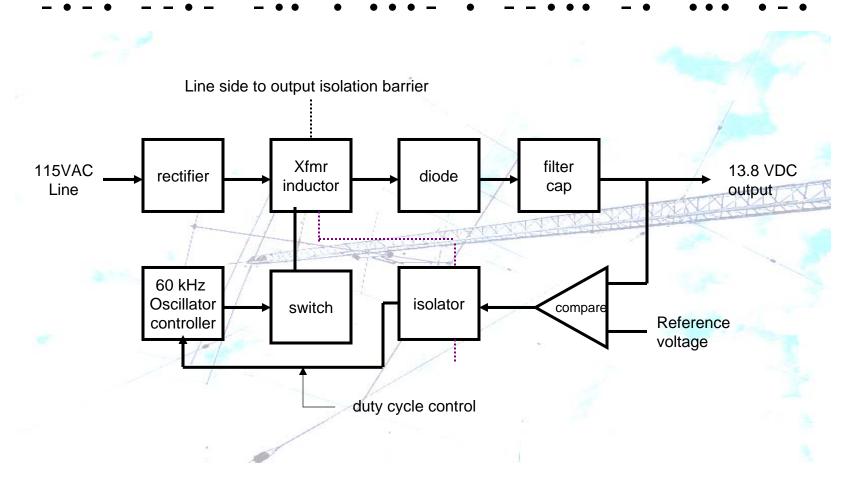
rectified line voltage

= Input



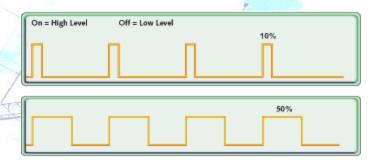
 Safety requirement; prevents load (you and equipment) from becoming connected to the AC mains in case of insulation failure

Switch Mode Circuit


Flyback converter

At 60kHz, energy is being transferred every 17 microseconds

Switch Mode Diagram



Duty Cycle Control

- Regulation achieved by varying the on – off time (duty cycle) of the 60kHz signal
- More "on" time (higher duty cycle) more energy is transferred, resulting in higher output voltage
- More "off" time, (lower duty cycle) less time, less energy, resulting in lower output voltage
- Regulator adjusts duty cycle such that output voltage remains constant as input voltage or output current changes

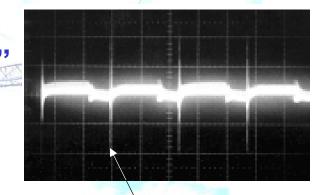
Low duty cycle – more off time

High duty cycle - more on time

Efficiency

Switcher is highly efficient, typically 85 to 90%

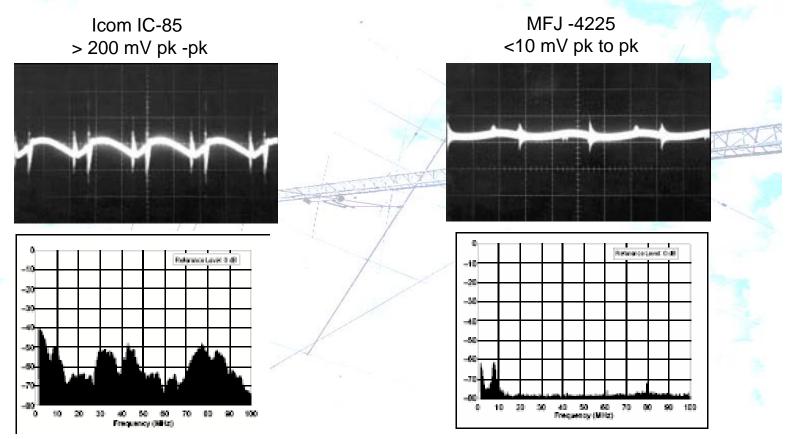
Cool parts


■ Linear supplies are inefficient, typically < 40%

Hot parts

Switcher Noise

- Turning a transistor on and off at a 60 kHz rate, when passing amps of current, at 100's of volts generates harmonics well into RF spectrum
- "Egads, my switcher is S7 on 20m"
- Choose switcher that is QUIET



Jiggers & Gizzies
technically known as switching transients
Bob Widler / National Semiconductor / SK

Switcher Comparison

■ January 200 QST - Product review SMPS (switch mode power supplies)

The End

- Buy switcher for size and efficiency
- Buy linear for low noise and reliability

Questions